A helly type theorem for hypersurfaces

نویسندگان

  • Mikhail Deza
  • Peter Frankl
چکیده

Let r be a commutative field (finite or infinite) and let P = P(n, r) be the n-dimensional projective space over ZY Then every point x E P can be expressed by n + 1 homogene coordinates x = (x,,..., x,), not all zero and (x0,..., x,) = @x0,..., Ax,) for OflET. By a hypersurface of degree d we simply mean the set of all points x E P with p(x) = 0, where p(x) is a homogenous polynomial of degree d in the n + 1 variables x0, x1 ,..., x,.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Weingarten hypersurfaces in a unit sphere

In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].  

متن کامل

Tolerance in Helly-Type Theorems

In this paper we introduce the notion of tolerance in connection with Helly type theorems and prove, using the Erdős-Gallai theorem, that any Helly type theorem can be generalized by relaxing the assumptions and conclusion, allowing a bounded number of exceptional sets or points. In particular, we analyze some of the classical Helly type theorems, such as Caratheodory’s and Tverberg’s theorems,...

متن کامل

Discrete and Lexicographic Helly Theorems and their Relations to LP-Type Problems

Helly’s theorem says that if every d + 1 elements of a given finite set of convex objects in IR have a common point, then there is a point common to all of the objects in the set. We define three new types of Helly theorems: discrete Helly theorems where the common point should belong to an a-priori given set, lexicographic Helly theorems where the common point should not be lexicographically g...

متن کامل

A Helly-type theorem for higher-dimensional transversals

We generalize the Hadwiger(-Danzer-Grünbaum-Klee) theorem on line transversals for an unbounded family of compact convex sets to the case of transversal planes of arbitrary dimension. This is the first Helly-type theorem known for transversals of dimension between 1 and d− 1.

متن کامل

Transversal and Helly-type Theorems in Geometry, Combinatorics and Topology

Helly’s theorem also holds for infinite families of compact convex sets, and has stimulated numerous generalization and variants. Results of the type “if every m members of a family of objects have property P then the entire family has the property P” are called Helly-type theorems. The minimum positive integer m that makes this theorem possible is called the Helly number. Helly-type theorems h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1987